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Mixed-Integer PDE-Constrained Optimal Control of Gas
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Mirko Hahn†, Sven Leyffer‡, and Victor M. Zavala§,
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Abstract

We develop a mixed-integer optimal control model with partial differential equation con-
straints for gas transport networks, designed for planning extreme state transitions, such as
flow reversals. We use binary control variables to model different configurations of compres-
sor stations. We model the flow of gas using a simplified variant of the Euler equations, which
we discretize using a finite volume scheme, which obeys conservation of mass and average im-
pulse independent of the direction of flow. The resulting large-scale mixed-integer nonlinear
optimization is difficult to solve by using standard branch-and-bound solvers, and we propose
several heuristics that allow us to solve realistic instances. We compare the performance of
several solution schemes on ten test instances.

Keywords: Gas networks, flow reversal, PDE constraints, mixed-integer nonlinear optimiza-
tion.
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1 Introduction: Background and Motivation

Since the early 2000s, the world has seen a dramatic increase in natural gas as an energy carrier.
In the United States, where production of natural gas has increased by more than a third since
the year 2000 according to the U.S. Energy Information Administration, natural gas is now the
foremost energy carrier in electricity production; and consumption for other industrial uses is
steadily increasing [18]. Meanwhile, a movement to renewable energy sources in Europe and parts
of Asia has led to increased use of gas as an interim energy carrier, emergency energy reserve, and
potential means of energy storage [6].
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This development is not without risks, since greater demand for natural gas is accompanied by
correspondingly greater stresses on natural gas distribution networks. While supply has increased
in recent years, the consumption of consumer-grade natural gas [14, tbl. 1] still regularly exceeds
production based on weather and other external factors. Since natural gas transport is significantly
slower than long-distance electricity transport, supply network operators depend on an ability to
anticipate demands and act accordingly. Failure to do so in situations where demands fluctuate
severely can lead to forced electrical outages and production losses [1].

In order to minimize such losses, various efforts are currently under way to develop math-
ematical descriptions of natural gas transport networks and derive insights into their optimal
operation from these descriptions. The range of prior work by other researchers is too broad to
properly address fully here and ranges from detailed descriptions of the operation of a single com-
pressor station [9,15] to more ambitious work attempting to optimize controls for entire networks
with integer switches that inhabit a steady state [13], approximate optimal transient controls on
larger networks with integer switches [8], and even find optimal transient controls on simplified
networks without integer switches with [21] and without [22] uncertainty.

In this paper, we develop a mixed-integer optimal control model for gas transport networks
that do not inhabit a stationary state, using partial differential equation (PDE) constraints to model
the flow of gas. Our goal in designing this model is to find control configurations that satisfy
given, deterministically fluctuating demand patterns at minimal network operation cost. In doing
so, we attempt to minimize the number of restrictions we place on control inputs. For instance, we
avoid prior assumptions on fixed direction of flow such as those made in [21] and simplifications
made concerning the operational constraints of compressor stations such as those found in [22].
In contrast to approximate solution methods as proposed by [8], we attempt to solve the resulting
optimization problems to integer optimality and propose methods of accelerating this process.

Section 2 introduces our model formulation, which is based on [21] and makes simplifying
assumptions similar to those made by [8, 13, 22]. We avoid assumptions on fixed flow directions
made in [21] by using a finite volume discretization scheme. In designing our model, we follow
a modular approach with an eye to future efforts to increase model fidelity, scale the method
to larger networks, and use parallel solvers. Section 3 proposes several modifications designed to
lessen the performance impact of large numbers of integers in branch-and-bound solvers. Possible
extensions to increase the potential for future parallelization are discussed. Section 4 presents two
test problems to which we apply our modified solvers to estimate the impact of our modifications.
We find that performance can be increased substantially by modifying tree-search methods and
that approximate solvers may benefit from branching rules that take into account the structure of
the problem. Section 5 summarizes our findings and proposes future avenues of research.

Notation

We adopt a number of useful notational conventions to improve the presentation of our optimiza-
tion model.
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• Uppercase calligraphic letters (e.g. A) denote sets.
• i, j, k, l denote indices.
• K,L (with appropriate subscripts) denote break points in index sequences.
• m,n,N denote integer sizes (e.g., of vectors and matrices).
• v, w denote vertices of the network graph.
• Parenthesized superscripts (e.g., p(v)) denote an associated network element.
• Non cursive roman subscripts (e.g., pin) are symbolic.
• A horizontal bar (e.g., p̄) denotes an averaged quantity.

When discussing individual model elements, we attempt to introduce index variables as late as
possible. For instance, when discussing the dynamics of a single pipe (v, w), we omit the super-
script ·(v,w) denoting the particular pipe in question unless a distinction between variables and
constraints associated with different pipes becomes material to the discussion.

2 Optimization and Control Model

In this section, we describe our model of gas flow through a gas transport network. Section 2.1
describes the structure of a network and its various components, which we will later model as
individual units with interactions through shared optimization variables. Section 2.2 briefly intro-
duces the time grids we will use when discretizing the partial differential equations, which are in-
troduced in Section 2.3. We use a simplified version of the one-dimensional Euler equations, which
is widely used for large-scale gas network models. While we briefly sketch the derivation of these
equations from the original Euler equations and the assumptions made to justify simplifications,
our primary focus will be the PDE discretization described in Section 2.3.3. Section 2.4 focuses on
the modeling of junctions and compressor stations, which constitute our primary means of con-
trolling flow within the network. We adopt a realistic compressor model that can be expressed
solely in terms of linear constraints on three continuous variables and an auxiliary binary indi-
cator variable. Discretized versions of the appropriate constraints are described in Section 2.4.2.
Section 2.5 aggregates the constraints and objective functions derived in the preceding sections
into a complete discretized MINLP (2.29). The issues we will face in solving this problem and our
approach to solving them are summarized in Section 2.6.

2.1 Network Structure

Gas transport networks are complex systems. However, they can be thought of as combinations
of simpler components that can be described in isolation from one another and interact through
shared sets of variables. The most commonly modeled network components are pipes, junctions,
compressor machines, and various types of valves. For our discussion, we will omit the modeling
of valves and assume that valves and compressor machines occur only in larger assemblies called
compressor stations. We assume such compressor stations to occur only at junctions and will discuss
them as part of our discussion on junction modeling in Section 2.4.
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Our primary network components are therefore pipes and junctions. The structure of a net-
work can be described by using a directed graph G = (V,A) where arcs a ∈ A ⊂ {(v, w) ∈ V2 |
v 6= w} represent pipes and vertices v ∈ V represent junctions at which these pipes meet and
interact. While we do not assume a fixed direction of flow, the direction of an arc indicates the
nominal direction of positive flow in the corresponding pipe. A given pipe (v, w) ∈ A leads from
its nominal inlet junction v ∈ V to its nominal outlet junction w ∈ V . We denote the neighborhood
of v ∈ V by

N (v) := {w ∈ V | (v, w) ∈ A ∨ (w, v) ∈ A}.
Junctions also represent locations where the network may exchange gas with the environment.

To this end, some junctions are marked as supply junctions v ∈ S that inject gas into the network
or demand junctions v ∈ D that withdraw gas from it. For reasons that we will elaborate on in
Section 2.4, we assume that, for supply junctions v ∈ S,∣∣N (v)

∣∣ = 1.

To simplify notation when introducing compressor stations in Section 2.4, we also prohibit
antiparallel arcs, that is,

(v, w) ∈ A ⇒ (w, v) /∈ A ∀v, w ∈ V.

2.2 Time Discretization

To keep the number of integer variables low, we will distinguish between two time grids when
discretizing our PDE system: the integer control grid and the sampling grid. The sampling grid is
the finer of the two and serves as a time grid for both the discretization of continuous controls
and the discretization of state variables in the optimization problem. Its name is derived from
the fact that, depending on the choice of simulation method and the presence of adaptive error
control, the simulation grid may actually be finer than the sampling grid. In this case, we enforce
the constraints of our optimization problem on average over each interval of the sampling grid.
Thus, state variables can be said to be sampled over intervals of the sampling grid.

For this discussion, we assume that a finite time horizon [0, T ] 6= ∅ and a number of sampling
intervals Nt ∈ N are given. For i ∈ {0, . . . , Nt}, the points of the sampling grid are given by
ti := iT

Nt
. The resolution of the sampling grid is determined by its time step ∆t := T

Nt
.

The sampling grid is assumed to be a refinement of the integer control grid, which we also
assume to be equidistant; that is, there is a step δ ∈ {1, . . . Nt}with δ | Nt such that the grid points
of the integer control grid are given by tKi with

Ki := iδ ∀i ∈
{

0, . . . ,
Nt

δ

}
.

For ease of notation, we define Nw := Nt
δ . Further, for every sampling interval j ∈ {1, . . . , Nt} we

denote the index of the associated integer control interval by

Jj :=

⌊
i− 1

δ

⌋
+ 1.
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2.3 Pipes and Flow Modeling

Single-phase subsonic gas flow is generally modeled by using the Euler equations [8,11,13,16,21,
22]. We adopt the following simplified version of the one-dimensional Euler equations, suggested
in [16] and adopted for transient stochastic optimal control of gas networks in [21]:

∂t

(
p

q

)
+

(
0 c2

A

A 0

)
︸ ︷︷ ︸

=:B

∂x

(
p

q

)
=

(
0

−α · |q|qp

)
, (2.1)

where p denotes the average pressure across the pipe’s cross section, q denotes the mass of the
gas passing through the pipe’s cross section in a given unit of time, A denotes the cross-sectional
area of the pipe, and c2 denotes the square of the speed of sound inside the gas. The coefficient α
weighs the friction term, which we will discuss in Section 2.3.1.

The PDE system (2.1) is derived under the assumption that the gas is isothermal, which elimi-
nates the necessity of modeling the distribution of heat. In addition, we assume that gas flows at
sufficiently low speed and follows the following variant of the ideal gas law:

p = z
R

M
Tρ, (2.2)

where z is the gas’ compressibility factor, M is its molar mass, T is its temperature, and

R = 8,314.4598
J

kmol K

is the universal gas constant.
We also assume that global bounds exist on both pressure and flow rate (see Section 2.4), given

by p ∈ [p̌, p̂] ⊂ R>0 and q ∈ [−q̂, q̂] ⊂ R, respectively.

2.3.1 Source Term

The source term appearing in (2.1) represents an external force acting on the gas due to friction at
the inner wall of the pipe. The coefficient α is given by

α :=
λc2

2AD
,

where D is the pipe’s inner diameter, A = π
4D

2 is its cross-sectional area, and λ is the Darcy friction
coefficient, which can be derived from the ratio between D and the pipe wall’s effective roughness
height ε by solving an approximation of the Colebrook-White equation [4] originally proposed by
the Swanee and Jain [19], under the assumption that the gas’s Reynolds number is high in regimes
where friction is relevant:

λ =

(
2 log

(
3.7D

ε

))−2

.

We assume that all pipes are located on an isosurface of the gravitational potential, meaning
that gravity does not affect the movement of gas, although this assumption can be avoided by
adding a linear source term depending on the local incline and the pressure of the gas.
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To make the solutions of the discretized system twice differentiable with respect to the bound-
ary controls, we make the following approximation for sufficiently large M > 0:

−α · |q|q
p
≈ −2α

π
arctan(Mq)

q2

p
.

Note that the scaled arctangent deviates from the signum function only for small q, where q2

can be assumed to make the error negligible unless p approaches zero. To simplify notation in
subsequent sections, we write

ϕα,M (p, q) := −2α

π
arctan(Mq)

q2

p
.

2.3.2 Boundary Conditions and Existence of Solutions

The existence and uniqueness of continuously differentiable solutions over a limited time horizon
(which need not span the entire time horizon of the problem) in the presence of nonlinear source
terms are guaranteed by the results of [12] assuming an appropriate set of boundary conditions.

According to [12], the number and location of the boundary conditions are dictated by the
eigenvalues and left eigenvectors of the coefficient matrix B, which has two distinct real eigenval-
ues λ1/2 = ∓c. The corresponding left eigenvectors define the Riemann invariants of the homoge-
neous problem:

ξ1 =

√
A2

c2 +A2
p−

√
c2

c2 +A2
q and ξ2 =

√
A2

c2 +A2
p+

√
c2

c2 +A2
q. (2.3)

Note that this linear transformation of (p, q)-space is bijective with

p =
1

2

√
c2 +A2

A2

(
ξ2 + ξ1

)
and q =

1

2

√
c2 +A2

c2

(
ξ2 − ξ1

)
. (2.4)

In transformed space, the simplified Euler equations (2.1) with the approximations described in
Section 2.3.1 take the following form:

∂tξ1 − c · ∂xξ1 = −
√

c2

c2 +A2
ϕα,M

(
1

2

√
c2 +A2

A2

(
ξ2 + ξ1

)
,
1

2

√
c2 +A2

c2

(
ξ2 − ξ1

))
, (2.5a)

∂tξ2 + c · ∂xξ2 =

√
c2

c2 +A2
ϕα,M

(
1

2

√
c2 +A2

A2

(
ξ2 + ξ1

)
,
1

2

√
c2 +A2

c2

(
ξ2 − ξ1

))
, (2.5b)

meaning that the state components ξ1 and ξ2 travel through the pipe in opposite directions at
constant speed c while being converted into one another due to the source term.

According to [12], it is sufficient to impose a Dirichlet boundary condition on ξ1 at x = L

and a Dirichlet boundary condition on ξ2 at x = 0, where either boundary condition may involve
the current boundary value of the other Riemann invariant. Specifically, we may choose either
pressure or flow boundary conditions for either side, but not both. Here, we specify boundary
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pressure on both sides of the pipe, since this is convenient for modeling compressor stations on
the inlet and outlet of each pipe:

p(0, x) = p0(x) and q(0, x) = q0(x) ∀x ∈ [0, L],

p(t, 0) = pin(t) and p(t, L) = pout(t) ∀t ∈ [0, T ],

where it is assumed that p0(0) = pin(0) and p0(L) = pout(0). Under these assumptions, it follows
from [12] that the system (2.1) has a unique solution within a neighborhood of t = 0.

2.3.3 Discretization

Next, we describe our discretization of the PDE system (2.1). We discretize the system by first
transforming it into a system of ordinary differential equations (ODEs) by means of a finite vol-
ume method derived from Godunov’s scheme [7] and then discretizing that ODE system using
a numerical integration method. This approach allows us to easily extend the model to include
adaptive timestepping methods later.

Finite volume methods in general are based on the observation that, for continuously differen-
tiable p and q, the following equality holds due to the divergence theorem:

∫ x2

x1

(
∂t

(
p

q

)
+B · ∂x

(
p

q

))
dx = ∂t

(∫ x2

x1

(
p

q

)
dx

)
+B ·

(
p|x=x2 − p|x=x1

q|x=x2 − q|x=x1

)
.

We divide each pipe by an equidistant grid

xi := i
L

Nx︸︷︷︸
=:∆x

∀i ∈ {0, . . . , Nx}

and denote by p̄i and q̄i for i ∈ {1, . . . , Nx}, the averages of p and q over the ith spatial subinterval
[xi−1, xi]:

p̄i(t) :=
1

∆x

xi∫
xi−1

p(t, x) dx, q̄i(t) :=
1

∆x

xi∫
xi−1

q(t, x) dx.

Accepting an error incurred by replacing the values of pressure and flow rate in the source term
with their averages, we can rewrite (2.1) as

dp̄i
dt

=
c2

A
· q|x=xi−1 − q|x=xi

∆x
∀i ∈ {1, . . . , Nx}, (2.7a)

dq̄i
dt

= A · p|x=xi−1 − p|x=xi

∆x
+ ϕα,M

(
p̄i, q̄i

)
∀i ∈ {1, . . . , Nx}. (2.7b)

To complete the discretized ODE system, we must approximate the state function values at the
grid points xi. This approximation is made by solving the homogeneous problem locally for small
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time horizons. The homogeneous problem can be solved exactly by mixing the Riemann invari-
ants from the subintervals immediately incident to the grid point:

p|x=xi =
1

2

√
c2 +A2

A2

(
ξ̄2,i + ξ̄1,i+1

)
=

1

2

(
p̄i + p̄i+1

)
+

c

2A

(
q̄i − q̄i+1

)
,

q|x=xi =
1

2

√
c2 +A2

c2

(
ξ̄2,i − ξ̄1,i+1

)
=
A

2c

(
p̄i − p̄i+1

)
+

1

2

(
q̄i + q̄i+1

)
.

Note that, in order for these terms to be independent of the states in other subintervals, we have
to impose an upper bound on the time step that is equal to the time it takes a pressure wave to
cross an entire subinterval. This leads to the following Courant-Friedrichs-Lewy (CFL) condition:

∆t ≤ ∆x

c
. (2.8)

For the boundary grid points i = 0 and i = Nx, we must substitute ξ̄1,Nx+1 and ξ̄2,0 with ap-
propriate expressions derived from the boundary conditions. For pressure, these boundary val-
ues are self-evident. For flow rates, however, the calculation is slightly more complicated. Since
p|x=x0 = pin and p|x=xNx

= pout, we find that

ξ̄2,0 := 2

√
A2

c2 +A2
pin − ξ̄1,1,

ξ̄1,Nx+1 := 2

√
A2

c2 +A2
pout − ξ̄2,Nx

are the only choices that satisfy the boundary conditionseq:boundary-conditions, meaning that

q|x=x0 =
A

c

(
pin − p̄1

)
+ q̄1,

q|x=xNx
=
A

c

(
p̄Nx − pout

)
+ q̄Nx .

By entering these terms into the spatially discretized Euler equationseq:discrete-euler and ap-
plying a numerical time integration scheme, the explicit Euler method in our case, to solve the
resulting ODE system, we can derive a suitable system of equality constraints for a given pipe
a ∈ A.

To simplify notation, we split the right-hand side of the ODE into a linear vector function
F (a) : RN

(a)
x × RN

(a)
x × R2 → RN

(a)
x × RN

(a)
x given by

F
(a)
i

(
p̄(a), q̄(a), p

(a)
in , p

(a)
out

)
:=

c

2∆x(a)

(
p̄

(a)
i−1 − 2p̄

(a)
i + p̄

(a)
i+1

)
+

c2

2A(a)∆x(a)

(
q̄

(a)
i−1 − q̄

(a)
i+1

)
, (2.9a)

F
(a)

N
(a)
x +i

(
p̄(a), q̄(a), p

(a)
in , p

(a)
out

)
:=

A(a)

2∆x(a)

(
p̄

(a)
i−1,j − p̄

(a)
i+1,j

)
+

c

2∆x(a)

(
q̄

(a)
i−1,j − 2q̄

(a)
i,j + q̄

(a)
i+1,j

)
, (2.9b)
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for all i ∈ {2, . . . , N (a)
x − 1} and the following terms for the boundary cells:

F
(a)
1

(
p̄(a), q̄(a), p

(a)
in , p

(a)
out

)
:=

c

2∆x(a)

(
2p

(a)
in − 3p̄

(a)
1 + p̄

(a)
2

)
+

c2

2A(a)∆x(a)

(
q̄

(a)
1 − q̄(a)

2

)
, (2.9c)

F
(a)

N
(a)
x +1

(
p̄(a), q̄(a), p

(a)
in , p

(a)
out

)
:=

A(a)

2∆x(a)

(
2p

(a)
in − p̄

(a)
1 − p̄

(a)
2

)
+

c

2∆x(a)

(
−q̄(a)

1 + q̄
(a)
2

)
, (2.9d)

F
(a)

N
(a)
x

(
p̄(a), q̄(a), p

(a)
in , p

(a)
out

)
:=

c

2∆x(a)

(
p̄

(a)

N
(a)
x −1

− 3p̄
(a)

N
(a)
x

+ 2p
(a)
out

)
+

c2

2A(a)∆x(a)

(
q̄

(a)

N
(a)
x −1

− q̄(a)

N
(a)
x

)
,

(2.9e)

F
(a)

2N
(a)
x

(
p̄(a), q̄(a), p

(a)
in , p

(a)
out

)
:=

A(a)

2∆x(a)

(
p̄

(a)

N
(a)
x −1

+ p̄
(a)

N
(a)
x

− 2p
(a)
out

)
+

c

2∆x(a)

(
q̄

(a)

N
(a)
x −1

− q̄(a)

N
(a)
x

)
.

(2.9f)

The nonlinear portion of the right-hand side of the ODE system is given by the vector function
G(a) : RN

(a)
x × RN

(a)
x × R2 → RN

(a)
x × RN

(a)
x with

G
(a)
i

(
p̄(a), q̄(a), p

(a)
in , p

(a)
out

)
:= 0 ∀i /∈ {N (a)

x + 1, . . . , 2N (a)
x }, (2.10a)

G
(a)

N
(a)
x +i

(
p̄(a), q̄(a), p

(a)
in , p

(a)
out

)
:= ϕα(a),M

(
p̄

(a)
i , q̄

(a)
i

)
∀i ∈ {1, . . . , N (a)

x }. (2.10b)

With these shorthands, the discretized equation system describing the behavior of the gas within
the pipe takes the following form:

1

∆t

(
p̄

(a)
∗,j − p̄

(a)
∗,j−1

q̄
(a)
∗,j − q̄

(a)
∗,j−1

)
= F (a)

(
p̄

(a)
∗,j−1, q̄

(a)
∗,j−1, p

(a)
in,j , p

(a)
out,j

)
+G(a)

(
p̄

(a)
∗,j−1, q̄

(a)
∗,j−1, p

(a)
in,j , p

(a)
out,j

)
∀j ∈ {1, . . . , Nt},

(2.11)

where j is an index identifying the interval of the time grid with which the equation is associated.
Furthermore, since the time discretization implied by the explicit Euler method is piecewise linear,
the average boundary flow rate over a time interval specified by the index j ∈ {1, . . . , Nt} is given
by

q̄
(a)
in,j =

A

c

(
p

(a)
in,j −

1

2

(
p̄

(a)
1,j−1 + p̄

(a)
1,j

))
+

1

2

(
q̄

(a)
1,j−1 + q̄

(a)
1,j

)
, (2.12a)

q̄
(a)
out,j =

A

c

(1

2

(
p̄

(a)
Nx,j−1 + p̄

(a)
Nx,j

)
− p(a)

out,j

)
+

1

2

(
q̄

(a)
Nx,j−1 + q̄

(a)
Nx,j

)
. (2.12b)

Note that equations in (2.11 – 2.12) are completely symmetric with respect to the orientation
of the pipe and the designation of inlet and outlet. Indeed, the direction of nominally positive
flow does not factor into the derivation of finite volume methods at all. In addition, since the
approximate pressures and flow rates at the grid points xi are shared between adjacent cells, finite
volume methods guarantee that, in total, no mass or impulse is lost between cells.

This indifference to direction of flow presents a major advantage of the finite volume method
over simple upwinding schemes such as the one used in [21], which can guarantee proper conser-
vation of mass and impulse only if the direction of flow is known ahead of time and may require
artificial flow splitting schemes and the introduction of large numbers of integers to be used in
scenarios where the direction of flow is not known ahead of time and may vary across the length
of the pipe.
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2.3.4 Initial Conditions and Steady States

For the PDE solution to be well defined, an initial state must be specified. For instance, this state
may simply be assumed or derived by interpolating between sparse sensor data. For the purposes
of a purely hypothetical scenario, such data are generally not available. We may therefore wish to
derive an initial state using a different method.

Since our objective is to find the optimal response to a fluctuation in demand in a system that
was previously in a stable state, one conceivable method is to choose a stable initial condition.
For this discussion, we take the word “stable” to mean that the network is in a steady state, in
other words, that all initial demands are being satisfied in such a way that the state of the network
does not change over time. For a single pipe, this can easily be expressed by demanding that the
right-hand side of the ODE system be zero at the beginning of the time horizon:

F
(a)
i

(
p̄

(a)
∗,0, q̄

(a)
∗,0 , p

(a)
in,1, p

(a)
out,1

)
+G

(a)
i

(
p̄

(a)
∗,0, q̄

(a)
∗,0 , p

(a)
in,1, p

(a)
out,1

)
= 0 ∀i ∈ {1, . . . , 2N (a)

x }. (2.13)

2.3.5 Objective Function Terms

Our goal is that the network bridge the demand fluctuation being modeled without deviating
from the stable state that it starts in, as discussed in Section 2.3.4. Otherwise, the network could
avoid drawing in gas from external sources by running a deficit over the time horizon of the
simulation. One way to avoid this situation would be to penalize a difference in the total amount
of gas contained within the network:

κ∆x(v,w)
∣∣∣ ∑
(v,w)∈A

N
(v,w)
x∑
i=1

(
p̄

(v,w)
i,Nt

− p̄(v,w)
i,0

)∣∣∣,
where κ ≥ 0 is a global penalty parameter.

However, this runs a risk of the network ending up in an unsustainable state due to the lo-
cation and impulse of the gas. Therefore, we adopt a stricter L1 penalty for both average pres-
sure and average mass flow rate. For each pipe (v, w) ∈ A, we introduce additional variables
∆p̄(v,w),∆q̄(v,w) ∈ RN

(v,w)
x and inequality constraints

∆p̄
(v,w)
∗ ≥ p̄(v,w)

∗,0 − p̄(v,w)
∗,Nt

, (2.14a)

∆p̄
(v,w)
∗ ≥ p̄(v,w)

∗,Nt
− p̄(v,w)
∗,0 , (2.14b)

∆q̄
(v,w)
∗ ≥ q̄(v,w)

∗,0 − q̄(v,w)
∗,Nt

, (2.14c)

∆q̄
(v,w)
∗ ≥ q̄(v,w)

∗,Nt
− q̄(v,w)
∗,0 . (2.14d)

The penalty term for (v, w) then takes the form

κ∆x(v,w)
N

(v,w)
x∑
i=1

(
∆p̄

(v,w)
i + ∆q̄

(v,w)
i

)
. (2.15)

Note that by fixing the initial state and penalizing the difference to a fixed terminal state, one can
use the model to plan any transition between two known network states.
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2.4 Junctions and Compressor Stations

Now that we have defined the constraints modeling the behavior of a single pipe, we turn to
those points in the network where pipes interact with one another and with the environment.
These junctions correspond to vertices of the network graph.

We assume that junctions themselves do not possess any capacity to store gas. In other words,
while gas may be injected into the network at supply junctions v ∈ S or withdrawn from it at
demand junctions v ∈ D, we are interested primarily in solutions in which gas is not otherwise
removed or added at any junction. This condition can be modeled by using the following balance
equation: ∑

(w,v)∈A

q(v,w)(t, La)−
∑

(w,v)∈A

q(v,w)(t, 0) + q(v)
src (t)− q(v)

snk(t) = 0 ∀v ∈ V, t ∈ [0, T ], (2.16)

where q(v)
src : [0, T ] → [0,∞) denotes the amount of gas injected at junction v ∈ V over time and

q
(v)
snk : [0, T ] → [0,∞) denotes the amount of gas withdrawn at the same junction over time. Nat-

urally, we assume that source and sink flows are zero at junctions that do not act as sources or
sinks:

q(v)
src (t) = 0 ∀v ∈ V \ S, t ∈ [0, T ],

q
(v)
snk(t) = 0 ∀v ∈ V \ D, t ∈ [0, T ].

Aside from linking the inlet and outlet flows of connected pipes via equation (2.16), junctions
also define their boundary pressures. If no compression is performed, all pipes connected to a
given junction must share the same boundary pressure, which is stored in a node pressure variable
p(v) : 0→ R+:

p(w,v)(t, La) = p(v)(t) ∀(w, v) ∈ A, t ∈ [0, T ],

p(v,w)(t, 0) = p(v)(t) ∀(v, w) ∈ A, t ∈ [0, T ].

However, we assume that each junction v ∈ V also functions as a compressor station that may
apply a multiplicative boost to the boundary pressure of each connected pipe:

p(w,v)(t, La) = µ(v,w)(t)p(v)(t) ∀(w, v) ∈ A, t ∈ [0, T ],

p(v,w)(t, 0) = µ(v,w)(t)p(v)(t) ∀(v, w) ∈ A, t ∈ [0, T ],

where µ(v,w)(t) ≥ 1. We index the compression ratio at the outlet side of a pipe (w, v) ∈ Awith the
reversed tuple (v, w). This notation is well defined because of the prohibition of antiparallel pipes
stated in Section 2.1.

Accurate modeling of different types compressor machines exceeds the scope of this paper.
See, for instance, [11, ch. 2], for a discussion of the underlying physical principles governing gas
compressor operation. The compression ratio, while acting as a control variable in our model, is
subject to certain constraints, the precise form of which depends on the type and model of the
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Figure 1: Example of a centrifugal compressor approximate feasible region (adapted from the
GasLib-40 test network [10]). Nonlinear bounds are indicated by thick lines.

compressor machine as well as various environmental factors. In [11, ch.2] the feasible region of a
compressor machine is expressed in terms of adiabatic change in specific enthalpy and volumetric flow
rate.

The adiabatic change in specific enthalpy is a nonlinear function of the compression ratio,
while the volumetric flow rate is proportional to the ratio between the mass flow rate and the
compressor suction pressure. By transforming back from adiabatic change in specific enthalpy to
compression ratio and then scaling by the compressor suction pressure p(v)(t) > 0, we may assume
that the feasible region of each compressor machine is given in terms of the pipe boundary mass
flow rate and the compressor discharge pressure, which is equal to the pipe boundary pressure.

The precise shape of the feasible region depends on the type of compressor in question. For
instance, [20] indicates that a centrifugal compressor is limited by simple bounds on the speed
of the rotor rotation and the ratio between the volumetric flow rate and that speed. After several
nonlinear transformations, these simple bounds generally become nonlinear and even nonconvex.
To avoid complications, we will work with a suitably large polyhedral subset of the feasible region
such as the one depicted in Figure 1.

Assume that the polyhedral approximate feasible region depicted in Figure 1 is given in terms of
compression ratio µ and volumetric flow rate V by the following linear system of equations:

A

(
µ

M
zRT V

)
≤ b.

Then we can obtain an equivalent system in terms of discharge pressure pd and mass flow rate q
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by scaling both sides of the equation with the suction pressure ps:

A

(
pd

q

)
≤ bps, or equivalently

(
A −b

)pd

q

ps

 ≤ 0.

We will therefore assume that the feasible region of any compressor is given as a polyhedral cone
in terms of discharge pressure (i.e., pipe boundary pressure), mass flow rate, and suction pressure
(i.e., node pressure).

In larger compressor stations, different types of compressor machines may be used either in
parallel or in series, with different arrangements often being used to cover various subsets of the
(µ,Q)-space. To account for this type of complex behavior, we allow compressors to operate in
different modes. For each compressor installed at an endpoint (v, w) of a pipe (v, w) or (w, v) ∈ A,
let N (v,w)

c ∈ N0 denote the number of such modes with N (v,w)
c = 0 indicating that no compressor

is installed. To switch between these modes, we introduce integer controls.
For each k ∈ {1, . . . , N (v,w)

c }, we introduce a binary indicator variable χ(v,w)
k : [0, T ] → {0, 1}

that indicates that the kth mode is active at a given point in time. At any given time, at most one
node may be active:

N
(v,w)
c∑
k=1

χ
(v,w)
k (t) ≤ 1 ∀(v, w) ∈ A, t ∈ [0, T ], (2.18a)

N
(w,v)
c∑
k=1

χ
(w,v)
k (t) ≤ 1 ∀(v, w) ∈ A, t ∈ [0, T ]. (2.18b)

Further, we allow for the specification of a matrix A(v,w,k) ∈ Rm(v,w,k)×3 and such that the feasible
region of the kth mode of the compressor is enforced by the indicator constraint:

χ
(v,w)
k (t) = 1 ⇒ A(v,w,k)

p
(v,w)(t, 0)

q(v,w)(t, 0)

p(v)(t)

 ≤ 0 ∀(v, w) ∈ A, k ∈ {1, . . . , N (v,w)
c }, (2.19a)

χ
(w,v)
k (t) = 1 ⇒ A(w,v,k)

 p(v,w)(t, Lv,w)

−q(v,w)(t, Lv,w)

p(w)(t)

 ≤ 0 ∀(v, w) ∈ A, k ∈ {1, . . . , N (w,v)
c }. (2.19b)

When no mode is active, we assume that compressors are being bypassed. Therefore, the com-
pression ratio must be 1:

N
(v,w)
c∑
k=1

χ
(v,w)
k (t) = 0 ⇒ µ(v,w)(t) = 1 ∀(v, w) ∈ V2 : (v, w) ∈ A ∨ (w, v) ∈ A, t ∈ [0, T ]. (2.20)

2.4.1 Indicator Constraint Relaxation

Since indicator constraints, such as those used to encode a compressor feasible region in equa-
tions (2.19) and (2.20), are not supported by most MINLP solvers, we relax them manually using a
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big-M formulation. In Section 2.3, we had assumed pressure and flow rate to be globally bounded
throughout the network. Note that the pressure bounds imply bounds on the compression ratio:

1 ≤ µ ≤ µ̂,

where µ̂ := p̂
p̌ .

Consider any pipe endpoint (v, w) and associated compressor mode k ∈ {1, . . . , N (v,w)
c }. With-

out restriction of generality, we assume that (v, w) is the inlet endpoint of the pipe (v, w) ∈ A. For
every row i ∈ {1, . . . ,m(v,w,k)} of A(v,w,k), we define

M
(v,w,k)
i := max

A(v,w,k)
i,∗

pd

q

ps


∣∣∣∣∣∣∣ pd ∈ [p̌, p̂], ps ∈ [p̌, p̂], q ∈ [−q̂, q̂], pd ≥ ps

 <∞.

Given the vector M (v,w,k) ∈ Rm(v,w,k)
, the indicator constraints (2.19) are equivalent to

(
A(v,w,k) M (v,w,k)

)

p(v,w)(t, 0)

q(v,w)(t, 0)

p(v)(t)

χ
(v,w)
k (t)

 ≤M (v,w,k) ∀ t ∈ [0, T ], (v, w) ∈ A,
k ∈ {1, . . . , N (v,w)

c },
(2.21a)

(
A(w,v,k) M (w,v,k)

)

p(v,w)(t, Lv,w)

−q(v,w)(t, Lv,w)

p(w)(t)

χ
(w,v)
k (t)

 ≤M (w,v,k) ∀ t ∈ [0, T ], (v, w) ∈ A,
k ∈ {1, . . . , N (w,v)

c }.
(2.21b)

To simplify the reformulation of (2.20) and the formulation of our objective function in Sec-
tion 2.5, we introduce separate compression ratio variables µ(v,w)

k : [0, T ] → [1,∞) for each com-
pressor mode k and accumulate them using a sum of logarithms to obtain the following reformu-
lation of (2.17):

log
(
p(v,w)(t, 0)

)
= log

(
p(v)(t)

)
+

N
(v,w)
c∑
k=1

log
(
µ

(v,w)
k (t)

)
∀(v, w) ∈ A, t ∈ [0, T ], (2.22a)

log
(
p(v,w)(t, Lv,w)

)
= log

(
p(w)(t)

)
+

N
(w,v)
c∑
k=1

log
(
µ

(w,v)
k (t)

)
∀(v, w) ∈ A, t ∈ [0, T ], (2.22b)

which, given that all pressures and compression ratios are strictly positive, is equivalent to multi-
plying them. The indicator constraint (2.20) can then equivalently be enforced by using

µ
(v,w)
k (t) ≤ 1 + (µ̂− 1)χ

(v,w)
k (t) ∀t ∈ [0, T ], v ∈ V, w ∈ N (v), k ∈ {1, . . . , N (v,w)

c }. (2.23)

2.4.2 Time Discretization

At each junction v ∈ V , we introduce discretized flow balance constraints for each interval of the
sampling grid: ∑

(w,v)∈A

q̄
(w,v)
out,j −

∑
(w,v)∈A

q̄
(w,v)
out,j + q

(v)
src,j = q̄

(v)
snk,j ∀j ∈ {1, . . . , Nt}.
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We relax these constraints by introducing nonnegative slack variables q̄(v)
slk,j ≥ 0, which represent

a certain amount of gas to being ejected from the network at junction v. In Section 2.4.4, we will
introduce an L1 penalty term for these slack variables:∑

(w,v)∈A

q̄
(w,v)
out,j −

∑
(w,v)∈A

q̄
(w,v)
out,j + q

(v)
src,j − q̄

(v)
slk,j = q̄

(v)
snk,j ∀j ∈ {1, . . . , Nt}, v ∈ V. (2.24)

Discretization of compressor constraints presents several concerns. Since flow rates are av-
eraged over intervals of the sampling grid, actual flow rates encountered during the simulation
may exceed the feasible region of the compressor station. We will not address these concerns here,
assuming that sufficiently fine sampling grids will prevent these occurrences from being suffi-
ciently severe to present real risk if sufficient safety margins are maintained when defining the
approximate feasible region.

We discretize node pressure p(v) and compression ratio µ(v,w) as piecewise constant functions
that are constant in the interior of each interval of the sampling grid. Similarly, we discretize χ(v,w)

as a piecewise constant vector function that is constant in the interior of each interval of the integer
control interval, meaning that for each node v ∈ V , we obtain a node pressure vector p̄(v) ∈ RNt ,
and for each pipe endpoint (v, w), we obtain a compression ratio matrix µ(v,w) ∈ RN

(v,w)
c ×Nt and a

compressor mode matrix χ(v,w) ∈ {0, 1}N(v,w)
c ×Nw .

The discretized compressor constraints are given by the discretized form of the boundary pres-
sure constraints (2.22)

log
(
p

(v,w)
in,j

)
− log

(
p

(v)
j

)
−
N

(v,w)
c∑
k=1

log
(
µ

(v,w)
k,j ) = 0 ∀j ∈ {1, . . . , Nt}, (v, w) ∈ A, (2.25a)

log
(
p

(v,w)
out,j

)
− log

(
p

(w)
j

)
−
N

(w,v)
c∑
k=1

log
(
µ

(w,v)
k,j ) = 0 ∀j ∈ {1, . . . , Nt}, (v, w) ∈ A, (2.25b)

the constraint (2.23) restricting the compression ratio of inactive compressors,

µ
(v,w)
k,j − (µ̂− 1)χ

(v,w)
k,j ≤ 1 ∀j ∈ {1, . . . , Nt}, v ∈ V, w ∈ N (v), k ∈ {1, . . . , N (v,w)

c }, (2.25c)

the discretization of the constraints (2.21), which define the compressor feasible region,

A(v,w,k)

p
(v,w)
in,j

q̄
(v,w)
in,j

p
(v)
j

 ≤ (1− χ(v,w)
k,Jj

)
M (v,w,k) ∀ t ∈ {1, . . . , Nt}, (v, w) ∈ A,

k ∈ {1, . . . , N (v,w)
c },

(2.25d)

A(w,v,k)

 p
(v,w)
out,j

−q̄(v,w)
out,j

p
(w)
j

 ≤ (1− χ(w,v)
k,Jj

)
M (w,v,k) ∀ t ∈ {1, . . . , Nt}, (v, w) ∈ A,

k ∈ {1, . . . , N (w,v)
c },

(2.25e)

and the special ordered set (SOS) constraint (2.18),

N
(v,w)
c∑
k=1

χ
(v,w)
k,j ≤ 1 ∀j ∈ {1, . . . , Nw}, v ∈ V, w ∈ N (v). (2.25f)



16 Hahn, Leyffer, and Zavala

2.4.3 Assumptions and Simplifications

To simplify the definition of feasible regions for our test problems in Section 4, we assume that all
compressors defined there have exactly one mode (i.e., N (v,w)

c = 1) and that the only constraint on
the feasible region is that compressors may not push against the flow:

A(v,w,1) :=
(

0 0 −1
)
.

Under these assumptions, we simply have

M (v,w,1) :=
(
q̂
)
.

More generally, we assume that compressors cannot push against the flow. Under this as-
sumption, we can guarantee that every non-source junction v ∈ V \ S that is transporting any
amount of gas has at least one pipe with an inactive compressor. The boundary pressure of that
pipe then defines the internal node pressure, which would otherwise act as a free variable that
could be manipulated to compress gas without using compressors.

For source junctions v ∈ S, we had already assumed that there is exactly one incident pipe.
We may therefore assume that the boundary flow in that pipe is outgoing. We assume the internal
pressure of these nodes to be fixed, and we introduce a single control variable p(v)

fix ∈ R that defines
the internal node pressure over the entire time horizon.

2.4.4 Objective Function Terms

We introduce three objective terms for junctions. First, gas supplied by a supply junction v ∈ S is
associated with a monetary cost proportional to the mass of the gas supplied:

∆t

Nt∑
j=1

C
(v)
src,j q̄

(v)
src,j , (2.26)

where C(v)
src ∈ RNt

+ . Note that in the undiscretized problem, this can be interpreted as a linear
functional in L2([0, T ]).

Second, for every v ∈ V and w ∈ N (v), the compressor located at the pipe endpoint (v, w),
which we will assume to be the inlet endpoint of the pipe (v, w), incurs costs associated with the
energy used to compress the gas flowing through it. The precise amount of energy used by a com-
pressor depends on the specific change in adiabatic enthalpy, the mass flow rate, the compressor’s
adiabatic efficiency (which we have omitted from our model), and various properties of its drive.

We assume that all compressors are electrically driven and operate at a mode-dependent con-
stant adiabatic efficiency. We further assume that electrical power costs are the same for all com-
pressors. In reality, most compressors are driven by gas turbines fed with gas passing through
the junction, while adiabatic efficiency varies nonlinearly depending on the specific change in adi-
abatic enthalpy and the volumetric flow rate [11, ch. 2]. Under these assumptions, we obtain a
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nonconvex objective term of the following form [16, 21] for the endpoint (v, w):

∆t

Nt∑
j=1

N
(v,w)
c∑
k=1

C
(v,w)
cmpr,k,j q̄

(v,w)
in,j

((
µ

(v,w)
k,j

)ω
− 1
)
.

Note that this term is zero for µ = 1, which is necessary to make sure that inactive compressor
modes do not contribute to the objective function. To avoid the additional runtime penalty in-
curred by including this objective term, we assume that the exponent ω, which is always between
0 and 1, is equal to 1. Further, we assume that most boundary flow rates will be roughly equal
in magnitude, that the adiabatic efficiency for every compressor mode is equal, and that the cost
of electrical power is the same at every pipe endpoint. Under these assumptions, we arrive at a
simpler, linear objective term:

Ccmpr∆t

Nt∑
j=1

N
(v,w)
c∑
k=1

(
µ

(v,w)
k,j − 1

)
, (2.27)

where Ccmpr ≥ 0 is a global parameter.
Third, we penalize the flow balance slack variable for a given junction v ∈ V with the following

L1 penalty term:

κ∆t

Nt∑
j=1

q
(v)
slk,j . (2.28)

2.5 Optimization Problem

The complete optimization problem is formulated by aggregating the objective terms and con-
straints listed in Tables 1 and 2:

minimize
p,p̄,q̄,pin,pout,pfix,
q̄in,q̄out,qsrc,qslk,

µ,χ

∑
v∈S

(2.26) +
∑
v∈V

(
(2.28) +

∑
w∈N (v)

(2.27)
)

+
∑

(v,w)∈A

(2.15)

subject to Discretized PDE constraints (2.11 – 2.12) ∀(v, w) ∈ A,
Steady state constraints (2.13) ∀(v, w) ∈ A,
Absolute value constraints (2.14) ∀(v, w) ∈ A,
Flow balance constraints (2.24) ∀v ∈ V,
Compressor constraints (2.25) ∀v ∈ V,
Local pressure bounds from Table 2 ∀v ∈ V,
Local supply flow bounds from Table 2 ∀v ∈ S,
Local compression ratio bounds from Table 2 ∀v ∈ V,
Local slack flow bounds from Table 2 ∀v ∈ V,
Shared boundary pressure bounds ∀v ∈ V, w ∈ N (v)

(2.29)



18 Hahn, Leyffer, and Zavala

Table 1: Summary of pipe blocks.

Object: Pipe (v, w) ∈ A

Parameters: • Penalty parameter κ ≥ 0

• Length Lv,w > 0

• Diameter Dv,w > 0

• Effective roughness height εv,w ≥ 0

• Number of spatial intervals N (v,w)
x ∈ N

Variables: • Boundary pressure controls
(
p

(v,w)
in , p

(v,w)
out

)
∈ [p̌, p̂]2Nt (independent)

• State deviation
(

∆p̄(v,w), ∆q̄(v,w)
)
∈ R2N

(v,w)
x (independent)

• State over time
(
p̄(v,w), q̄(v,w)

)
∈ R2N

(v,w)
x ×(Nt+1) (dependent)

• Average boundary flow rates
(
q̄

(v,w)
in , q̄

(v,w)
out

)
∈ R2Nt (dependent)

Constraints: • Discretized PDE constraints (2.11) – (2.12):
(
2N

(v,w)
x + 2

)
Nt equations

• Steady state constraints (2.13): 2N
(v,w)
x equations

• Absolute value constraints (2.14): 4N
(v,w)
x inequalities

Objective: • Periodicity penalty (2.15)

Total: • 2N
(v,w)
x (Nt + 2) + 4Nt continuous variables

• 2N
(v,w)
x (Nt + 1) + 2Nt equality constraints

• 4N
(v,w)
x inequality constraints

• 4Nt bound constraints
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Table 2: Summary of junction blocks.

Object: Junction v ∈ V

Parameters: • Supply bounds
(
q̌

(v)
src , q̂

(v)
src

)
∈ R2Nt (if v ∈ S)

• Specific supply cost C(v)
src ∈ RNt

+ (if v ∈ S)
• Demand profile q̄(v)

snk ∈ RNt
+ (if v ∈ D)

• Specific compressor cost Ccmpr ∈ R+

• Compressor modes N (v,w)
c ∈ N0 for all w ∈ N (v)

• MatricesA(v,w,k) ∈ Rm(v,w,k)×3 for allw ∈ N (v) and k ∈ {1, . . . , N (v,w)
c }

• Penalty parameter κ ≥ 0

Variables: • Supply flow rates q̄(v)
src ∈

[
q̌

(v)
src , q̂

(v)
src

]
(if v ∈ S, independent)

• Fixed internal pressure p(v)
fix ∈ [p̌, p̂] (if v ∈ S, independent)

• Flow slack variables q(v)
slk ∈ RNt

+ (independent)

• Compression ratios µ(v,w) ∈ RN
(v,w)
c ×Nt
≥1 for all w ∈ N (v) (independent)

• Indicators χ(v,w) ∈ {0, 1}N(v,w)
c ×Nw for all w ∈ N (v) (independent)

• Boundary flow q̄
(v,w)
in or q̄(w,v)

out ∈ RNt for all w ∈ N (v) (independent)
• Internal pressure p(v) ∈ [p̌, p̂]Nt (dependent)
• Boundary pressure p(v,w)

in or p(w,v)
out ∈ [p̌, p̂]Nt for w ∈ N (v) (dependent)

Constraints: • Flow balance (2.24): Nt equations
• Boundary pressure (2.25): Nt|N (v)| equations

• Compressor modes (2.25):
∑

w∈N (v)

(
Nw +

N
(v,w)
c∑
k=1

(1 +m(v,w,k))Nt

)
inequalities

Objective: • Supply costs (2.26) (if v ∈ S)
• Compressor operating costs (2.27)
• Flow balance slack penalty (2.28)

Total: • (2+2|N (v)|)Nt+
∑

w∈N (v)

N (v,w)
c Nt continuous variables (+(Nt+1) if v ∈ S)

•
∑

w∈N (v)

N (v,w)
c Nt binary variables

• (1 + |N (v)|)Nt equality constraints

•
∑

w∈N (v)

(
Nw +

N
(v,w)
c∑
k=1

(1 +m(v,w,k))Nt

)
inequality constraints

•
(

3 + 2|N (v)|+
∑

v∈N (v)

N (v,w)
c

)
Nt bound constraints (+(2Nt + 2) if v ∈ S)
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2.6 Computational Challenges

The optimization problem (2.29) is a discretized mixed-integer PDE-constrained optimization
(MIPDECO) problem, where the integer controls arise as degrees of freedom in the discretiza-
tion of the time-dependent binary-valued control function χ. Therefore, the problem has features
of a mixed-integer optimal control (MIOC) problem. However, efficient approximate solution
methods for MIOC problems, such as combinatorial integral approximation [17], generally do
not account for constraints such as (2.25) that restrict controls based on the solution of the differ-
ential equation. We are therefore confined to using general-purpose mixed-integer solvers. For
the remainder of this paper, we will describe several methods by which the performance of a
general-purpose branch-and-bound solver may be improved to achieve adequate performance in
problems of this kind.

Note also that the governing PDE constraints and several of the compressor constraints are
nonlinear equality constraints, which are inevitably nonconvex. We do not address this noncon-
vexity here, which would require the use of global optimization methods that, given the large
number of variables in a discretized PDE-constrained problem, would be prohibitive.

3 Branch and Bound

As part of this paper, we provide an implementation of the model described in Section 2, written
in the modeling language AMPL [5]. We make several modifications to the underlying branch-
and-bound MINLP solver Minotaur1.

A basic branch-and-bound algorithm to solve the convex mixed-integer optimization problem

min
x,y

f(x, y) s.t.(x, y) ∈ F , x ∈ Rn, y ∈ Zm (3.30)

is given as Algorithm 1. Variants of this basic algorithm differ in the precise design of the data
structure of Q and the implementation of insert, select, bound, and branchvar.

Generally, for convex problems, the operation bound is used to identify a tight lower bound
for the optimization problem associated with a given node and, if f (n)

lb < ∞, a solution x̂, ŷ such
that f (n)

lb = f(x̂, ŷ). It is implemented by solving a restricted variant of the relaxed problem

min
x,y

f(x, y) s.t.(x, y) ∈ F , x ∈ Rn, y ∈ Rm (3.31)

where further restrictions are introduced by branching.

The structure of Q and the operations insert and select are closely related. Together, they form
the algorithm’s node selection method, which defines the order in which the nodes of the branch-
and-bound tree are explored. We use two different node selection methods: a well-established
method referred to as best-then-dive and a custom method we will refer to as gradual backtracking.

1Version 0.2.0, available from https://wiki.mcs.anl.gov/minotaur/ (as of August 10, 2017)

https://wiki.mcs.anl.gov/minotaur/
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Algorithm 1: Branch-and-bound algorithm
Data: Q is an (initially empty) data structure suitable for storing unprocessed nodes
Result: (x∗, y∗) ∈ Rn × Zn is an optimal solution of (3.30) or (3.30) is infeasible

1 Construct root node r, set f (pr)
lb ← −∞, set Q← insert(r,Q), and set fub ←∞;

2 while Q not empty do
3 (n,Q)← select(Q) ; // Pick next subproblem to be solved.

4 if f (pn)
lb < fub then

5 (f
(n)
lb , x̂, ŷ)← bound(n) ; // Find a lower bound for the subproblem

6 if f (n)
lb < fub then

7 if ŷ ∈ Zm then
// Register new best integer-feasible solution

8 (x∗, y∗, fub)← (x̂, ŷ, f(x̂, ŷ));

9 else
// Branch on a variable that violates integrality

10 i← branchvar(n, x̂, ŷ);
11 Create node u from n by adding constraint yi ≥ dŷie;
12 Create node d from n by adding constraint yi ≤ bŷic;
13 (pu, pd)← (n, n);
14 Q← insert(d, insert(u,Q));

In best-then-dive, the structure Q is a tuple of a special node d and a set of all remaining nodes
H . When children are inserted intoQ, as shown in Algorithm 2, d is always the child with the best-
estimated objective. All other children are inserted into H . When selecting nodes, as shown in
Algorithm 3, the solver first attempts to select the best immediate child d and then, if d = NULL,
defaults to the node with the best rigorous lower bound. Best-then-dive has disadvantages if the
number m of integer variables is high. Since the best node is not determined by its estimated
objective but rather by the lower bound of its parent, the best node is likely to be located at a
shallow depth, and subsequent dives are liable to explore drastically different solutions rather
than first attempting to correct erroneous decisions made during the current dive.

Gradual backtracking attempts to address this issue while simultaneously avoiding the pitfalls
of a full depth-first search, which can easily degenerate into an exhaustive search if bad decisions
are made near the root of the branch-and-bound tree. It can be interpreted as a depth-first search
in which all nodes above a cutoff value fco ∈ [flb, fub] that is dynamically placed between the
global lower and upper bounds are disregarded and deferred for later exploration. As the tree
is explored, global lower and upper bounds change, meaning that fco also changes over time.
Once a depth-first search is exhausted, gradual backtracking chooses the deferred node with the
best lower bound and starts a new depth-first search rooted in that node. Note that at that point
the lower bound of the best deferred node is equal flb and therefore guaranteed to satisfy the
cutoff criterion. To this end, both insert (Algorithm 4) and select (Algorithm 5) maintain a stack of
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Algorithm 2: Q′ ← insert(n,Q) for best-then-dive
Input: n is a node, Q = (d,H) where d is a node or NULL, and H is a set of nodes.
Output: Q′ = (d′, H ′) contains all nodes in Q and n.
Data: f (n)

est and f (d)
est are estimated objective values for n and d or∞ if none are available.

15 if d = NULL then
16 (d′, H ′)← (n,H) ; // Mark first child for diving.

17 else if f (n)
est < f

(d)
est then

18 (d′, H ′)← (n,H ∪ {d}) ; // Mark best child for diving.

19 else
20 (d′, H ′)← (d,H ∪ {n}) ; // Delay dealing with other children.

Algorithm 3: (n,Q′)← select(Q) for best-then-dive
Input: Q = (d,H) where d is a node or NULL, and H is a set of nodes.
Output: n is a node, Q′ = (d′, H ′) contains all nodes in Q except n.
Data: For every node m in Q, pm denotes m’s parent and f (pm)

lb is that parent’s lower bound.
21 if d 6= NULL then
22 (n, d′, H ′)← (d,NULL, H) ; // Select child marked for diving.

23 else

24 (n, d′)←
(

argminm∈H f
(pm)
lb ,NULL

)
; // Select best remaining node.

25 H ′ ← H \ {n};

nodes for the depth-first search and a set of deferred nodes. Nodes are moved from the depth-first
stack to the deferred set only if they violate the cutoff at the point where they would normally be
explored during the depth-first search.

While the choice of cutoff point can, in principle, be adapted based on ancillary data, we restrict
ourselves to choosing a fixed convex combination of flb and fub. That is, we introduce a parameter
β ∈ [0, 1] and a cutoff threshold

f (1)
co := flb + β(fub − flb).

To allow the user to introduce an initial cutoff fco < ∞ when fub = ∞, we also introduce an
additional parameter γ ≥ 0 and a second cutoff threshold

f (2)
co := flb + γ|flb|.

The actual cutoff threshold is then chosen to be the minimum of both thresholds:

fco := min{f (1)
co , f

(2)
co }.

We note that for α = β = 0, gradual backtracking is equivalent to a simple best-first search.
For α = 1 and β = ∞, on the other hand, gradual backtracking becomes a depth-first search.



Mixed-Integer PDE-Constrained Optimal Control of Gas Networks 23

Algorithm 4: Q′ ← insert(n,Q) for gradual backtracking
Input: n is a node, Q = (d, (s1, . . . , sk), H) with k ∈ N0, where d is a node or NULL, si is a

node for i ∈ [k], and H is a set of nodes.
Output: Q′ = (d′, (s′1, . . . , s

′
k′), H

′) contains all nodes in Q and n.
Data: β ∈ [0, 1], γ ≥ 0. For m ∈ {n, d, s1, . . . , sk} ∪H , pm is m’s parent and f (pm)

lb is its lower
bound. f (n)

est and f (d)
est are estimated objective values for n and d or∞ if none are

available. fub is the current global upper bound.
26 flb ← min

m∈{d,s1,...,sm}∪H
f

(pm)
lb ;

27 fco ← min{flb + β(fub − flb), flb + γ|flb|};
28 if f (pn)

lb > fco then
29 (d′, k′, s′1, . . . , s

′
k′ , H

′)← (d, k, s1, . . . , sk, H ∪{n}) ; // Defer nodes above cutoff.

30 else if d = NULL then
31 (d′, k′, s′1, . . . , s

′
k′ , H

′)← (n, k, s1, . . . , sk, H) ; // Mark first child.

32 else if f (n)
est < f

(d)
est then

33 (d′, k′, s′1, . . . , s
′
k′ , H

′)← (n, k + 1, d, s1, . . . , sk, H) ; // Mark best child.

34 else
35 (d′, k′, s′1, . . . , s

′
k′ , H

′)← (d, k + 1, n, s1, . . . , sk, H) ; // Bypass other children.

Therefore, gradual backtracking can be seen as an interpolation between these two tree search
methods.

To understand the potential benefit of gradual backtracking, assume that the objective function
f is convex. Under this assumption, the sublevel set {(x, y) | f(x, y) ≤ fco} is a convex neighbor-
hood of the solution of the root node relaxation that decreases in size as the global upper bound
fub decreases. This is illustrated in Figure 2. All integer-feasible solutions outside this neighbor-
hood are then implicitly excluded from the search by being located in deferred subtrees. While
increasing the lower bound flb also increases the size of the neighborhood, such increases occur
only once it has been established that the sublevel set {(x, y) | f(x, y) ≤ flb} does not contain any
integer-feasible solutions.

We now come to the subroutine branchvar, which selects the index of a variable to branch on.
This routine implements the algorithm’s branching rule. We use reliability branching [2, 3] on the
variables with highest branching priority. Branching priorities for integer control variables are
chosen to be equal to the index of the time interval they are associated with. Thus, variables will
always be branched on in a reverse time order. While this choice of priorities is based primarily
on the observation that regular reliability branching tends to yield a reverse time branching order,
prioritized reliability branching is not equivalent in these cases. For comparison, we also test a
forward-in-time branching order and the standard method, which assigns equal priority to all
variables.
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Algorithm 5: (n,Q′)← select(Q) for gradual backtracking
Input: Q = (d, (s1, . . . , sk), H) with k ∈ N0, where d is a node or NULL, si is a node for

i ∈ [k], and H is a set of nodes.
Output: n is a node, Q′ = (d′, (s′1, . . . , s

′
k′), H

′) contains all nodes in Q except n.
Data: β ∈ [0, 1], γ ≥ 0. For every node m in Q, pm denotes m’s parent and f (pm)

lb is that
parent’s lower bound. fub denotes the current global upper bound.

36 flb ← min
m∈{d,s1,...,sm}∪H

f
(pm)
lb ;

37 fco ← min{flb + β(fub − flb), flb + γ|flb|};
38 if d = NULL then

// Backtrack using the DFS stack.

39 (n, d′, k′, s′1, . . . , s
′
k′ , H

′)← (NULL, d, k, s1, . . . , sk, H);
40 while n = NULL and k′ > 0 do

41 if f
(ps′1

)

lb ≤ fco then
42 (n, k′, s′1, . . . , s

′
k′)← (s′1, k

′ − 1, s′2, . . . , s
′
k′);

43 else
44 (k′, s′1, . . . , s

′
k′ , H

′)← (k′ − 1, s′2, . . . , s
′
k′ , H

′ ∪ {s′1}) ; // Defer node.

45 if n = NULL then
// Rebase to the best deferred node.

46 n← argminm∈H f
(pm)
lb ;

47 (d′, k′, H ′)← (NULL, 0, H \ {n});

48 else
// Dive into the marked direct decendant.

49 (n, d′, k′, s′1, . . . , s
′
k′ , H

′)← (d,NULL, k, s1, . . . , sk, H);
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1− β
β

Figure 2: Example of convex search regions induced by the cutoff threshold (dashed region is
restricted to solid region because of an integer solution found at the black point; the graph shows
objective along dotted line).

S1 S2D1 D2

(a) Test network “Inversion”.

S1 S2D1

D2

D3

(b) Test network “Triangle”.

Figure 3: Network graphs for both test networks.

4 Experiments

We apply our model to two test networks, described in Sections 4.1 and 4.2. For each network, we
describe a method by which instances can be randomized. Section 4.3 gives parameters that are
common to both networks. The methods described in Section 3 are then applied to six instances
of either network. Section 4.5 discusses the results of these experiments and their implications for
the solution methods proposed in Section 3.

4.1 Test Network “Inversion”

Our first test network is designed to test the model’s capability to model the reversal of flow in
a pipeline. The network is deliberately kept simple to ensure that a flow reversal is necessary
to meet the specified demand. The network is tree like and consists of three pipelines and four
junctions. It is depicted in Figure 3a and its pipe-specific parameters are given in Table 3a. The
time horizon of the problem is fixed to 1 h.
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Table 3: Pipe parameters for both test networks.

(a) Pipe parameters for “Inversion” network.

Pipe La [km] Da [mm] εa [mm] N
(a)
x

S1D1 300 920 0.025 10
D1D2 100 920 0.025 6
S2D2 300 920 0.025 10

(b) Pipe parameters for “Triangle” network.

Pipe La [km] Da [mm] εa [mm] N
(a)
x

S1D1 300 920 0.025 10
D1D2 100 920 0.025 6
D2D3 100 920 0.025 6
D3D1 100 920 0.025 6
S2D3 300 920 0.025 10
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Figure 4: Demand patterns for “Inversion” instances. Black line indicates mean.

Nodes S1 and S2 act as supply nodes. Both can supply between q̌(S1)
src (t) = q̌

(S2)
src (t) = 0.0 SCM/d

and q̂
(S1)
src (t) = q̂

(S2)
src (t) = 4.5× 106 SCM/d of natural gas to the network. Nodes D1 and D2 act as

demand nodes. Their individual demands are randomized according to a normal distribution
with a standard deviation σ = 0.25× 106 SCM/d and a mean that changes over time as follows.

• For the first 15 min, the mean demand for both D1 and D2 is 4.0× 106 SCM/d.
• From minute 16 to minute 30, the mean demand for D1 is 6.0× 106 SCM/d, while the mean

demand for D2 is 2.0× 106 SCM/d.
• From minute 31 to minute 45, the mean demand for D1 is 2.0× 106 SCM/d, while the mean

demand for D2 is 6.0× 106 SCM/d.
• From minute 46 to minute 60, the mean demand for both D1 and D2 is 4.0× 106 SCM/d.

Any sample drawn from these distributions that deviates from the mean by more than 2σ is re-
drawn. This guarantees that the sum of both demands can always be met by the maximal total
supply. The demand pattern is shown in Figure 4.

Since a single demand of between 5.5× 106 SCM/d and 6.5× 106 SCM/d cannot be met by a
single supply node, part of the higher of the two demands between minute 16 and minute 45 must
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be met by gas traveling through the pipe connecting D1 and D2. By switching the roles of D1 and
D2, we ensure that a flow reversal in that pipe is required to meet demand.

Problem instances using the “Inversion” network are designated inversion-base, for an
instance without any random fluctuation, or inversion-randomi for i ∈ {01,02,03,04,05}.

4.2 Test Network “Triangle”

The second test network is designed to test the behavior of our model for networks that contain
cycles. The network consists of seven pipelines and five junctions and is therefore necessarily not
tree like. Figure 3b depicts the structure of the network and the parameters for individual pipes
are given in Table 3b.

Again, nodes designated Si for i ∈ {1, 2} act as supply nodes, while nodes designated Di for
i ∈ {1, 2, 3} act as demand nodes. Both demand flow rates and supply cost are subject to normally
distributed random fluctuation where the mean value is subject to a sinusoidal fluctuation with a
period or 1 h, which is equal to the length of the time horizon.

The cost of gas at supply nodes S1 and S2 is given by

C(Si)
src (t) := 0.265

USD

SCM
+ 0.053

USD

SCM
· sin

(
φi + t · 2π h−1

)
+Xi,

where Xi denotes a random variable that is drawn from a normal distribution with a mean
of 0.0 USD/SCM and a standard deviation of 0.018 USD/SCM. If the resulting cost is below
0.071 USD/SCM, the random variable is redrawn. The phase angles are φ1 = 0 and φ2 = π/2.

The demand at a given demand node Di with i ∈ {1, 2, 3} is given by

q
(Di)
snk (t) := 10× 106 SCM

d
+ 5× 106 SCM

d
· sin

(
ψi + t · 2π h−1

)
+ Yi,

where Yi denotes a random variable that is drawn from a normal distribution with a mean of
0.0 SCM/d and a standard deviation of 0.5× 106 SCM/d, which is redrawn if it deviates from the
mean by more than two standard deviations. The phase angles are ψi = 2π

3 (i−1), ensuring that the
sum of the mean demands in all three demand nodes is always 30× 106 SCM/d. The maximum
supply flow from either supply node is 24× 106 SCM/d, ensuring that the maximum momentary
demand of 48× 106 SCM/d can be met. This demand pattern is shown in Figure 5.

Problem instances using the “Triangle” network are designated triangle-base, for an in-
stance without any random fluctuation, or triangle-randomi for i ∈ {01,02,03,04,05}.

4.3 Common Parameters

Both test networks are optimized on a time horizon of one hour, which is partitioned into nt =

180 equally sized intervals for the purposes of both simulation and control. Therefore, every
simulation and continuous control interval corresponds to a timespan of 20 s. In order to keep the
number of integer control variables small, only ten integer control intervals are included, so that
integer controls remain constant over timespans of 6 min.



28 Hahn, Leyffer, and Zavala

4

6

8

10

12

14

16

0 15 30 45 60

D
em

an
d

[1
×
1
0
6
S
C
M
/d

]

Time [min]

D1

4

6

8

10

12

14

16

0 15 30 45 60
D

em
an

d
[1
×
1
0
6
S
C
M
/d

]
Time [min]

D2

4

6

8

10

12

14

16

0 15 30 45 60

D
em

an
d

[1
×
1
0
6
S
C
M
/d

]

Time [min]

D3

Figure 5: Demand patterns for “Triangle” instances. Black line indicates mean.

Table 4: Numbers of variables (total and integer), constraints (equality, inequality, linear, nonlin-
ear), and nonzeros (constraint Jacobian, objective gradient) for the two test problems.

Problem Var Int Eq Ineq Lin Nonlin NZ in Constr NZ in Obj

Inversion 13,486 60 11,572 2,264 8,050 5,786 79,432 2,212

Triangle 19,694 100 16,816 3,752 11,890 8,678 118,764 3,136

The natural gas flowing in the network is assumed to be pure methane, which has the follow-
ing physical parameters, which are largely adopted from [21]:

z = 0.80, T = 293.15 K, M = 18.0
kg

kmol
, ρ0 = 0.72

kg

SCM
,

where the conversion factor ρ0 corresponds to the density of methane under standard conditions.
Note that, along with a universal gas constant of

R = 8,314.4598
J

kmol K
,

this yields a speed of sound of

c =

√
zRT

M
= 329.13

m

s
,

meaning that the CFL condition (2.8) is equivalent to

∆x ≥ 6.583 km,

which is satisfied by the pipe parameters laid out in Table 3.

4.4 Experimental Setup

All test instances are solved by using a modified version of Minotaur 0.2.0, using IPOPT 3.12 as
a relaxation solver. The exact dimensions of the resulting optimization problems are given in Ta-
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ble 4. Linear equation systems within IPOPT are solved by using the direct solver MA57 from the
Harwell Subroutine Library2, using a single-threading implementation of BLAS and LAPACK pro-
vided by the COIN-OR3 project. Therefore, all optimization solvers are entirely single-threading
with no attempt of parallelization.

Test instances are solved on single compute nodes with Intel E5430 Xeon CPUs and 32 GB of
DDR2 667 MHz (4 modules of 8 GB) memory each. Our primary performance metric is wall time,
which may be unreliable because the compute nodes are shared with other applications.

We employ six methods of solving the problem:

• bthend-fwdbr: Best-then-dive tree search with forward-in-time branching order;
• bthend-revbr: Best-then-dive tree search with reverse-in-time branching order;
• bthend-stdbr: Best-then-dive tree search with normal reliability branching;
• rlad-fwdbr: Gradual backtracking tree search with forward-in-time branching order;
• rlad-revbr: Gradual backtracking tree search with reverse-in-time branching order;
• rlad-stdbr: Gradual backtracking tree search with normal reliability branching.

For gradual backtracking, we use an initial target gap α = 1.0 and a target gap decay rate of
β = 0.1. The branch-and-bound algorithm is prematurely terminated if the relative integer gap
falls below 0.1 % or the tree search lasts for more than 48 h.

4.5 Experimental Results

Figure 6 shows the total runtime, total number of branch-and-bound nodes processed, and aver-
age runtime per node for each instance and solution method. We omit the results for best-then-
dive with forward-in-time branching on instance triangle-random02 because IPOPT exceeds
the maximum number of iterations on most subproblems for this method, which leads to a mis-
leadingly low number of processed nodes and a very high average processing time per node. Most
notable in the remaining results is the fact that except for inversion-random05, no branching
rule other than conventional reliability branching terminates in under 48 h for any instance or so-
lution method, indicating that both forward- and reverse-in-time branching do not significantly
improve the overall performance of the solver. The fact that this is the case for both best-then-dive
and gradual backtracking appears to indicate that this is not due to a negative interaction between
gradual backtracking and time-based branching orders.

In cases where standard reliability branching is used, gradual backtracking appears to pro-
vide a significant advantage in both total runtime and the number of nodes processed to reach
a solution. This appears most pronounced in instances using the more complex “Triangle” net-
work. While the average time needed to process a single branch-and-bound node in a “Triangle”
instance appears to decrease with the total number of branch-and-bound nodes processed, this is
likely due to a higher concentration of strong branching solves.

2Version 2014.01.10, available at http://www.hsl.rl.ac.uk/
3See https://www.coin-or.org/

http://www.hsl.rl.ac.uk/
https://www.coin-or.org/
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Figure 6: Runtime, nodes processed, and average node processing time for different instances
(dashed line indicates runtime limit).
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Figure 7: Progression of objective bounds over time for inversion-random02.

Note that while gradual backtracking performs better than best-then-dive in almost all in-
stances, this is not the case for triangle-random02, which is the only instance for which best-
then-dive outperforms gradual backtracking. Figure 7 shows the progression of global objective
bounds over time for this particular instance. It appears that, likely due to nonconvexity, best-
then-dive and gradual backtracking find different solutions in this instance. This does not occur
in any other test instance.

Figure 8 shows that, in instances using the “Triangle” test network, both forward- and reverse-
in-time branching orders often improve the quality of the first integer-feasible solution found.
The lower initial integer optimality gap may go some way to explaining the poor performance
of gradual backtracking with these branching orders. With a lower initial gap, the initial cutoff
threshold is also tighter, making gradual backtracking behave more like best-first node selection.
However, it is not immediately apparent how one might avoid this without introducing more
complex methods of choosing the cutoff point.

Flow Reversals

We now turn our attention to the solution generated for inversion-base using rlad-stdbr,
which serves as an example of the “Inversion” problem. As noted in Section 4.1, this network was
specifically designed to test our model’s ability to depict flow inversions.

Our interest in flow reversals lies in the fact that we restrict our compressors in such a way that
they cannot push directly against the flow of gas, making a flow reversal an event that requires
intervention from other network components. Indeed, the aforementioned solution shows this.
Figures 9 and 10 show the pipe boundary pressures at the inlet sides of the supply pipes (S1, D1)

and (S2, D2). Given a speed of sound of c = 329.13 m/s and a pipe length of L = 300 km for
both pipes, the expected travel time for a pressure wave is between 900 s and 920 s, or slightly
over 15 min. An accordingly shifted version of the inlet pressure curve is shown in both figures,
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Figure 8: Relative integer optimality gap of first solution for different instances.

indicating the projected outlet pressure assuming constant initial pressure and complete absence
of friction.

We see in Figure 10 that pressure at S2 spikes immediately after the beginning of the simulation
and around 30 min later. The former pressure wave is projected to reach D2 approximately 15 min

after the beginning of the simulation, causing flow in the exchange pipe (D1, D2) to become neg-
ative, which can be seen in Figure 11. Accordingly, the second spike reaches D2 at around 45 min,
where it slows the flow in the exchange pipe in order to return the network to an equilibrium.
Similarly, Figure 9 shows a pressure spike at S1 at around 15 min that would reach D1 at around
30 min, when the flow in the exchange pipe reverses direction.

These results indicate that the direction of flow in the exchange pipe is controlled mainly by the
pressure waves from the supply nodes S1 and S2. Models with the ability to depict flow reversals
may be of significant benefit in developing control configurations that result in flow reversals
since reversals require complex interactions between different network components that may not
be intuitive to human operators.

5 Conclusions and Outlook

In this paper, we have introduced an optimization model for transient optimal control of gas
transport networks. Our overall goal was to find inexpensive control configurations that satisfy
fluctuating demand. We model the flow of gas through these networks using a system of partial
differential equations derived from the Euler equations, which we discretize using a finite volume
method, making our model independent of prior knowledge of direction of flow, thus broadening
the range of allowed inputs beyond what is allowed by comparable models. We also showed that
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Figure 9: Inlet and projected outlet pressure at (S1, D1) in instance inversion-base.
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Figure 11: Inlet and outlet flow rates at (D1, D2) in instance inversion-base.

interesting insights into ways to produce more severe changes in the network state, such as flow
reversals, can be gained by using our model.

In modeling the compressor stations used to steer the flow of gas in our network, we intro-
duced time-dependent binary switches to the problem, thus making our problem part of the
challenging field of mixed-integer PDE-constrained optimization. While mixed-integer optimal
control problems can often be solved by using good approximate solution methods, our problem
is inaccessible to these methods because of the complex relationship between controls and PDE
solutions. We presented several modifications to branch-and-bound solvers that exploit the same
structural aspects as approximate solution methods to accelerate the solution process.

In several randomized instances of two test problems, we showed that, particularly by apply-
ing a gradually backtracking tree search method, we can substantially improve the performance
of branch-and-bound solvers. However, this tree search method appears to negatively interact
with branching orders that attempt to take into account the direction of the arrow of time, which
is commonly exploited in approximate solvers for mixed-integer optimal control.

Future avenues of research therefore include ways of dynamically choosing the cutoff point
for gradual backtracking to adapt to small integer optimality gaps. To scale the model to larger
networks, we plan to develop implementations using dedicated simulators and parallelization
using distributed scientific computing libraries, specifically the PETSc toolkit.
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